

FIG. 4. Variation of temperature derivatives of the elastic constants of olivine with (Fe/Mg) ratio. High-temperature values evaluated at the Debye temperature of each olivine are indicated with a dotted line. (G) stands for Graham's (1970) work and (KA) indicates work of Kumasawa & Anderson (1969); (\odot) are the present work.

D. H. Chung

the (dK_s/dT) value of forsterite is -0.131 kb/°K, and for fayalite the (dK_s/dT) value is -0.138 kb/°K.

Whether an elastic constant is a unique function of volume or not is an important question often asked by geophysicists. The answer to this question forms a basis of the so-called 'Law of Corresponding State' in thermodynamics of solids. An important consequence of the elasticity data reported here is that we can examine the above question in a systematic manner. The elastic constant M_j of olivine can be treated as a function of volume (thus interatomic separation) and temperature.

$$M_i = M_i (V, T) . \tag{8}$$

Taking logarithms and differentiating both sides with respect to temperature and rearranging the results, we find

$$(total) = (implicit) + (explicit)$$

$$\frac{d\ln M_j}{dT} = -\alpha_v K_T \left(\frac{\partial\ln M_j}{\partial p}\right)_T + \left(\frac{\partial\ln M_j}{\partial T}\right)_V.$$
(9)

Hence, from the present data on both the pressure and temperature derivatives of the elastic constants, we should be able to separate out the *changes* due to temperature from those due to volume. Table 4 lists the pressure and temperature coefficients of compressional (L_s) and shear (μ) moduli along with those of the adiabatic bulk modulus (K_s) . The quantities of interest here are $(\partial \ln M_j/\partial T)_V$ which are found from our experimental data; they are listed in the last column of Table 4. If the elastic constants are a function of volume alone, i.e. $M_j = M_j(V)$, then we would expect the quantity represented by the explicit term to be zero. But it is evident from Table 4 that this explicit term is a non-zero value implying the elastic constants are not a function of volume alone.* Most crystalline solids of geophysical interest

Table 4

Test on the volume-dependence Hypothesis of the elastic constants (at 296° K)

Olivine composition, mole %	^α _v 10 ⁻⁵ /°K	М,	$\frac{d \ln M_j}{dT}$ $\frac{10^{-5}}{}^{\circ}\text{K}$	$\alpha_{v} K_{T} \left(\frac{\partial \ln M i}{\partial p} \right)_{T}$	$\left(\frac{\partial \ln Mi}{\partial T}\right)_{V}$
100 Fo	2.55	Ls	-12.6	+10.4	- 2.2
		μ	-15.6	+ 7.5	- 8.1
		Ks	-10.2	+12.7	+ 2.5
50 Fo	2.43	Ls	-13.1	+10.1	- 3.0
		μ	-16.8	+ 5.9	-10.9
		Ks	-11.0	+13.1	+ 2.1
100 Fa	2.40	Ls	-13.9	+10.2	- 3.7
1010		μ	-18.3	+ 3.4	-14.9
inclusion with		Ks	-11.3	+14.1	+ 2.8

*Geophysical literature concerned with the elasticity often assumes the elastic constants are a function only of volume, but this is clearly incorrect. Anderson & Nafe (1965, p. 3959) found a relationship between the shear modulus and volume for oxide compounds, but this correlation seen by these authors should be re-examined before being accepted. The elastic constants of most alkali halides in which there are prominent central forces between the constituent ions can be treated as a unique function of volume only, as was first demonstrated by Lazarus (1949). A direct translation of this picture of the alkali halides to the system of oxides and silicates is dangerous and often misleading.